Saturday, November 18, 2017

Machine Learning Algorithm Spots Depression in Speech Patterns

Machine Learning Algorithm Spots Depression in Speech Patterns

Machine Learning Algorithm Spots Depression in Speech Patterns

Researchers from the University of Southern California have developed a new machine learning tool capable of detecting certain speech-related diagnostic criteria in patients being evaluated for depression. Known as SimSensei, the tool listens to patient's voices during diagnostic interviews for reductions in vowel expression characteristic of psychological and neurological disorders that may not be sufficiently clear to human interviewers.
Researchers from the University of Southern California have developed a new machine learning tool capable of detecting certain speech-related diagnostic criteria in patients being evaluated for depression. Known as SimSensei, the tool listens to patient's voices during diagnostic interviews for reductions in vowel expression characteristic of psychological and neurological disorders that may not be sufficiently clear to human interviewers.

No comments:

Post a Comment